
Robot Learning
Reinforcement learning



Last time…

• Dynamic programming in deterministic systems

• Dynamic programming in stochastic systems

• Markov decision processes

• Value/policy iteration
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We assumed we know the 
transition function.



Autonomous helicopter aerobatics through apprenticeship learning
Abbeel et al., IJRR 2010



Today…

• Model-based reinforcement learning

• Model-free reinforcement learning
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A great tutorial

ICML 2018 tutorial on “Optimization perspectives on learning to 
control” by Ben Recht:

https://youtu.be/hYw_qhLUE0o 
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https://youtu.be/hYw_qhLUE0o


Infinite horizon MDPs

State: 𝑠 ∈ 𝓢

Action: 𝑎 ∈ 𝓐

Transition: 𝑠𝑡+1 ∼ 𝑃 ⋅∣ 𝑠𝑡, 𝑎𝑡

Reward: 𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡)

Discount: 𝛾 ∈ 0,1

Policy: 𝜋: 𝓢 → 𝓐 or 𝜋: 𝓢 → Δ𝓐

Goal:

𝜋∗ = arg max
𝜋

𝔼 

𝑡=0

∞

𝛾𝑡𝑅 𝑠𝑡 , 𝜋 𝑠𝑡
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As a constrained optimization problem

maximize
𝜋

 𝔼𝒘 

𝑡=0

∞

𝛾𝑡𝑅 𝑠𝑡 , 𝑎𝑡

 

subject to 𝑠𝑡 = 𝑓 𝑠𝑡 , 𝑎𝑡 , 𝑤𝑡
 𝑎𝑡 = 𝜋(𝑠𝑡)
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Now, what if we don’t know the transition function 𝑓?



As a constrained optimization problem

maximize
𝜋

 𝔼𝒘 

𝑡=0

∞

𝛾𝑡𝑅 𝑠𝑡 , 𝑎𝑡

 

subject to 𝑠𝑡 = 𝑓 𝑠𝑡 , 𝑎𝑡 , 𝑤𝑡
 𝑎𝑡 = 𝜋(𝑠𝑡)
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✨ Reinforcement Learning ✨

Model-based Model-free

Approximate DP

Direct Policy Search



Model-based RL

maximize
𝜋

 𝔼𝒘 

𝑡=0

∞

𝛾𝑡𝑅 𝑠𝑡 , 𝑎𝑡

 

subject to 𝑠𝑡 = 𝑓 𝑠𝑡 , 𝑎𝑡 , 𝑤𝑡
 𝑎𝑡 = 𝜋(𝑠𝑡)
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1. Collect some data from the environment: 𝑠𝑡, 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1 𝑡=1
𝑁 .

2. Use supervised learning to learn መ𝑓 and 𝑅 (if not already known).

3. Solve the approximate problem assuming መ𝑓 and 𝑅.



Approximate dynamic programming
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maximize
𝜋

 𝔼𝒘 

𝑡=0

∞

𝛾𝑡𝑅 𝑠𝑡 , 𝑎𝑡

 

subject to 𝑠𝑡 = 𝑓 𝑠𝑡 , 𝑎𝑡 , 𝑤𝑡
 𝑎𝑡 = 𝜋(𝑠𝑡)

Remember Bellman equation:
𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝔼𝑠′∣𝑠,𝑎 max

𝑎′∈𝓐
𝑄 𝑠′, 𝑎′

Collect some data from environment and learn a 𝑄-function.



Approximate dynamic programming
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maximize
𝜋

 𝔼𝒘 

𝑡=0

∞

𝛾𝑡𝑅 𝑠𝑡 , 𝑎𝑡

 

subject to 𝑠𝑡 = 𝑓 𝑠𝑡 , 𝑎𝑡 , 𝑤𝑡
 𝑎𝑡 = 𝜋(𝑠𝑡)

𝑄 𝑠𝑡 , 𝑎𝑡 ≈ 𝑅 𝑠𝑡, 𝑎𝑡 + 𝛾 max
𝑎′∈𝓐

𝑄 𝑠𝑡+1, 𝑎′

𝑄new 𝑠𝑡, 𝑎𝑡 = 1 − 𝜂 𝑄old 𝑠𝑡 , 𝑎𝑡 + 𝜂 𝑅 𝑠𝑡 , 𝑎𝑡 + 𝛾 max
𝑎′∈𝓐

𝑄old 𝑠𝑡+1, 𝑎′  

This is the SARSA algorithm.



Approximate dynamic programming
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maximize
𝜋

 𝔼𝒘 

𝑡=0

∞

𝛾𝑡𝑅 𝑠𝑡 , 𝑎𝑡

 

subject to 𝑠𝑡 = 𝑓 𝑠𝑡 , 𝑎𝑡 , 𝑤𝑡
 𝑎𝑡 = 𝜋(𝑠𝑡)

𝑄 𝑠𝑡 , 𝑎𝑡 ≈ 𝑅 𝑠𝑡, 𝑎𝑡 + 𝛾 max
𝑎′∈𝓐

𝑄 𝑠𝑡+1, 𝑎′

𝑄new 𝑠𝑡, 𝑎𝑡 = 𝑄old 𝑠𝑡 , 𝑎𝑡 + 𝜂 𝑅 𝑠𝑡, 𝑎𝑡 + 𝛾 max
𝑎′∈𝓐

𝑄old 𝑠𝑡+1, 𝑎′ − 𝑄old(𝑠𝑡 , 𝑎𝑡) 

This is TD error. Many algorithms (e.g., DQN) use it.



Direct policy search

maximize
𝜋

 𝔼𝒘 

𝑡=0

∞

𝛾𝑡𝑅 𝑠𝑡 , 𝑎𝑡

 

subject to 𝑠𝑡 = 𝑓 𝑠𝑡 , 𝑎𝑡 , 𝑤𝑡
 𝑎𝑡 = 𝜋(𝑠𝑡)
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Idea: Formulate it as an unconstrained optimization to solve for 𝜋.

But the set of possible 𝜋’s are too large. Instead, make it a stochastic 
policy with parameters 𝜃.



Direct policy search

Objective to maximize:  𝐽 𝜃 = 𝔼𝜏∼𝑃𝜃(𝜏) 𝑅 𝜏
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𝑃𝜃 𝜏  is the probability of 
trajectory 𝜏 under policy 𝜋𝜃.

𝑅 𝜏  is cumulative discounted 
return of trajectory 𝜏.



Direct policy search
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𝐽 𝜃 = 𝔼𝜏∼𝑃𝜃(𝜏) 𝑅 𝜏

= ∫ 𝑃𝜃 𝜏 𝑅 𝜏 𝑑𝜏

∇𝜃 𝐽 𝜃 = ∫ ∇𝜃𝑃𝜃 𝜏 𝑅 𝜏 𝑑𝜏

= ∫ 𝑅 𝜏 ∇𝜃𝑃𝜃 𝜏 𝑑𝜏

= ∫ 𝑅 𝜏 𝑃𝜃(𝜏)
∇𝜃𝑃𝜃 𝜏

𝑃𝜃(𝜏)
𝑑𝜏

= ∫ 𝑅 𝜏 𝑃𝜃 𝜏 ∇𝜃 log 𝑃𝜃(𝜏) 𝑑𝜏

= 𝔼𝜏∼𝑃𝜃(𝜏) 𝑅 𝜏 ∇𝜃 log 𝑃𝜃(𝜏)



Direct policy search
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∇𝜃𝐽 𝜃 = 𝔼𝜏∼𝑃𝜃(𝜏) 𝑅 𝜏 ∇𝜃 log 𝑃𝜃(𝜏)

log 𝑃𝜃(𝜏) = log 𝑃 𝑠0 ෑ

𝑡=0

∞

𝑃 𝑠𝑡+1 ∣ 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡 ∣ 𝑠𝑡)

= log 𝑃 𝑠0 + 

𝑡=0

∞

log 𝑃 𝑠𝑡+1 𝑠𝑡, 𝑎𝑡 + 

𝑡=0

∞

log 𝜋𝜃 𝑎𝑡 ∣ 𝑠𝑡

∇𝜃 log 𝑃𝜃(𝜏) = 

𝑡=0

∞

∇𝜃 log 𝜋𝜃 𝑎𝑡 ∣ 𝑠𝑡



Direct policy search
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∇𝜃𝐽 𝜃 = 𝔼𝜏∼𝑃𝜃(𝜏) 

𝑡=0

∞

∇𝜃 log 𝜋𝜃 𝑎𝑡 ∣ 𝑠𝑡 

𝑡=0

∞

𝛾𝑡𝑅 𝑠𝑡 , 𝑎𝑡

∇𝜃𝐽 𝜃 = 𝔼𝜏∼𝑃𝜃(𝜏) 

𝑡=0

∞

∇𝜃 log 𝜋𝜃 𝑎𝑡 ∣ 𝑠𝑡 

𝑡′=𝑡

∞

𝛾𝑡′
𝑅 𝑠𝑡′ , 𝑎𝑡′

Because of causality: More on this in
the homework!

This is the REINFORCE algorithm. It is also known as policy gradient.



On-policy vs. off-policy
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∇𝜃𝐽 𝜃 = 𝔼𝜏∼𝑃𝜃(𝜏) 

𝑡=0

∞

∇𝜃 log 𝜋𝜃 𝑎𝑡 ∣ 𝑠𝑡 

𝑡′=𝑡

∞

𝛾𝑡′
𝑅 𝑠𝑡′ , 𝑎𝑡′

This is on-policy.



On-policy vs. off-policy

maximize
𝜋

 𝔼𝒘 

𝑡=0

∞

𝛾𝑡𝑅 𝑠𝑡 , 𝑎𝑡

 

subject to 𝑠𝑡 = 𝑓 𝑠𝑡 , 𝑎𝑡 , 𝑤𝑡
 𝑎𝑡 = 𝜋(𝑠𝑡)
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1. Collect some data from the environment: 𝑠𝑡, 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1 𝑡=1
𝑁 .

2. Use supervised learning to learn መ𝑓 and 𝑅 (if not already known).

3. Solve the approximate problem assuming መ𝑓 and 𝑅.



On-policy vs. off-policy
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maximize
𝜋

 𝔼𝒘 

𝑡=0

∞

𝛾𝑡𝑅 𝑠𝑡 , 𝑎𝑡

 

subject to 𝑠𝑡 = 𝑓 𝑠𝑡 , 𝑎𝑡 , 𝑤𝑡
 𝑎𝑡 = 𝜋(𝑠𝑡)

𝑄 𝑠𝑡 , 𝑎𝑡 ≈ 𝑅 𝑠𝑡, 𝑎𝑡 + 𝛾 max
𝑎′∈𝓐

𝑄 𝑠𝑡+1, 𝑎′

𝑄new 𝑠𝑡, 𝑎𝑡 = 1 − 𝜂 𝑄old 𝑠𝑡 , 𝑎𝑡 + 𝜂 𝑅 𝑠𝑡 , 𝑎𝑡 + 𝛾 max
𝑎′∈𝓐

𝑄old 𝑠𝑡+1, 𝑎′  

This is the SARSA algorithm.



Today…

We relaxed the assumption that we have the transition model.

We still assume we have access to the reward function/samples.
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Next time…

What if we do not have access to the reward function/samples but 
some expert trajectories?

• Imitation learning

• Inverse reinforcement learning
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